Energy Dissipation in Graphene Field-Effect Transistors
نویسندگان
چکیده
منابع مشابه
Energy dissipation in graphene field-effect transistors.
We measure the temperature distribution in a biased single-layer graphene transistor using Raman scattering microscopy of the 2D-phonon band. Peak operating temperatures of 1050 K are reached in the middle of the graphene sheet at 210 kW cm(-2) of dissipated electric power. The metallic contacts act as heat sinks, but not in a dominant fashion. To explain the observed temperature profile and he...
متن کاملHysteresis modeling in graphene field effect transistors
Graphene field effect transistors with an Al2O3 gate dielectric are fabricated on H-intercalated bilayer graphene grown on semi-insulating 4H-SiC by chemical vapour deposition. DC measurements of the gate voltage vg versus the drain current id reveal a severe hysteresis of clockwise orientation. A capacitive model is used to derive the relationship between the applied gate voltage and the Fermi...
متن کاملGraphene field-effect transistors with ferroelectric gating.
Recent experiments on ferroelectric gating have introduced a novel functionality, i.e., nonvolatility, in graphene field-effect transistors. A comprehensive understanding in the nonlinear, hysteretic ferroelectric gating and an effective way to control it are still absent. In this Letter, we quantitatively characterize the hysteretic ferroelectric gating using the reference of an independent ba...
متن کاملGraphene field effect transistors for bioelectronic applications
The development of the future generation of neuroprosthetic devices will require the advancement of novel solid-state sensors with a further improvement in the signal detection capability, a superior stability in biological environments, and a more suitable compatibility with living tissue. Due to the maturity of Si technology, Si-based MOSFETs have been extensively used in previous decades for...
متن کاملDeoxyribonucleic Acid Sensitive Graphene Field-Effect Transistors
We have investigated the effect of deoxyribonucleic acid (DNA) adsorption on a graphene field-effect-transistor (FET) device. We have used graphene which is grown on a Ni substrate by chemical vapour deposition. The Raman spectra of our graphene indicate its high quality, and also show that it consists of only a few layers. The current-voltage characteristics of our bare graphene strip FET show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2009
ISSN: 1530-6984,1530-6992
DOI: 10.1021/nl803883h